Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1378235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605703

RESUMO

Aromadendrin and taxifolin are two flavanonols (derived from the precursor naringenin) displaying diverse beneficial properties for humans. The carbon skeleton of these flavonoids may be transformed by the human gastrointestinal microbiota into other compounds, like auronols, which exert different and interesting biological activities. While research in flavonoids has become a certainly extensive field, studies about auronols are still scarce. In this work, different versions of the key plant enzyme for flavanonols biosynthesis, The flavanone 3-hydroxylase (F3H), has been screened for selecting the best one for the de novo production of these compounds in the bacterial factory Streptomyces albidoflavus UO-FLAV-004-NAR, a naringenin overproducer strain. This screening has rendered 2.6 µg/L of aromadendrin and 2.1 mg/L of taxifolin final production titers. Finally, the expression of the chalcone isomerase (CHI) from the gut bacterium Eubacterium ramulus has rendered a direct conversion (after feeding experiments) of 38.1% of (+)-aromadendrin into maesopsin and 74.6% of (+)-taxifolin into alphitonin. Moreover, de novo heterologous biosynthesis of 1.9 mg/L of alphitonin was accomplished by means of a co-culture strategy of a taxifolin producer S. albidoflavus and a CHI-expressing Escherichia coli, after the observation of the high instability of alphitonin in the culture medium. This study addresses the significance of culture time optimization and selection of appropriate enzymes depending on the desired final product. To our knowledge, this is the first time that alphitonin de novo production has been accomplished.

2.
Mol Metab ; 79: 101860, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142972

RESUMO

OBJECTIVE: The incidence of gestational diabetes mellitus (GDM) and metabolic disorders during pregnancy are increasing globally. This has resulted in increased use of therapeutic interventions such as metformin to aid in glycemic control during pregnancy. Even though metformin can cross the placental barrier, its impact on offspring brain development remains poorly understood. As metformin promotes AMPK signaling, which plays a key role in axonal growth during development, we hypothesized that it may have an impact on hypothalamic signaling and the formation of neuronal projections in the hypothalamus, the key regulator of energy homeostasis. We further hypothesized that this is dependent on the metabolic and nutritional status of the mother at the time of metformin intervention. Using mouse models of maternal overnutrition, we aimed to assess the effects of metformin exposure on offspring physiology and hypothalamic neuronal circuits during key periods of development. METHODS: Female C57BL/6N mice received either a control diet or a high-fat diet (HFD) during pregnancy and lactation periods. A subset of dams was fed a HFD exclusively during the lactation. Anti-diabetic treatments were given during the first postnatal weeks. Body weights of male and female offspring were monitored daily until weaning. Circulating metabolic factors and molecular changes in the hypothalamus were assessed at postnatal day 16 using ELISA and Western Blot, respectively. Hypothalamic innervation was assessed by immunostaining at postnatal days 16 and 21. RESULTS: We identified alterations in weight gain and circulating hormones in male and female offspring induced by anti-diabetic treatment during the early postnatal period, which were critically dependent on the maternal metabolic state. Furthermore, hypothalamic agouti-related peptide (AgRP) and proopiomelanocortin (POMC) neuronal innervation outcomes in response to anti-diabetic treatment were also modulated by maternal metabolic state. We also identified sex-specific changes in hypothalamic AMPK signaling in response to metformin exposure. CONCLUSION: We demonstrate a unique interaction between anti-diabetic treatment and maternal metabolic state, resulting in sex-specific effects on offspring brain development and physiological outcomes. Overall, based on our findings, no positive effect of metformin intervention was observed in the offspring, despite ameliorating effects on maternal metabolic outcomes. In fact, the metabolic state of the mother drives the most dramatic differences in offspring physiology and metformin had no rescuing effect. Our results therefore highlight the need for a deeper understanding of how maternal metabolic state (excessive weight gain versus stable weight during GDM treatment) affects the developing offspring. Further, these results emphasize that the interventions to treat alterations in maternal metabolism during pregnancy need to be reassessed from the perspective of the offspring physiology.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Gestacional , Humanos , Camundongos , Feminino , Gravidez , Animais , Masculino , Placenta , Camundongos Endogâmicos C57BL , Aumento de Peso , Dieta Hiperlipídica/efeitos adversos , Diabetes Gestacional/tratamento farmacológico
3.
Bioorg Chem ; 138: 106574, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163789

RESUMO

The bile acid pool has a profound impact on human health and disease. The intestinal microbiota initiates the metabolism of conjugated bile acids through a critical first step catalyzed by bacterial bile salt hydrolase (BSH) and provides unique contributions to the diversity of bile acids. There has been great interest in surveying BSH activity. We compared two substrates with either 2-(7-amino-4-methyl-coumarinyl)acetic acid or 7-amino-4-methyl-coumarin as fluorescent reporters of BSH activity. The BSH-catalyzed conversion of the natural substrate taurocholic acid was followed through an HPLC-based assay by applying 7-nitrobenzo[c][1,2,5]oxadiazole as scavenger for taurine, released in the enzymatic reaction. Hence, a new opportunity to monitor the activity of bile salt hydrolases was introduced.


Assuntos
Clostridium perfringens , Corantes Fluorescentes , Humanos , Amidoidrolases/metabolismo , Bactérias/metabolismo , Ácidos e Sais Biliares
4.
Chemistry ; 28(62): e202201636, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35852812

RESUMO

Rhodesain is the major cysteine protease of the protozoan parasite Trypanosoma brucei and a therapeutic target for sleeping sickness, a fatal neglected tropical disease. We designed, synthesized and characterized a bimodal activity-based probe that binds to and inactivates rhodesain. This probe exhibited an irreversible mode of action and extraordinary potency for the target protease with a kinac /Ki value of 37,000 M-1 s-1 . Two reporter tags, a fluorescent coumarin moiety and a biotin affinity label, were incorporated into the probe and enabled highly sensitive detection of rhodesain in a complex proteome by in-gel fluorescence and on-blot chemiluminescence. Furthermore, the probe was employed for microseparation and quantification of rhodesain and for inhibitor screening using a competition assay. The developed bimodal rhodesain probe represents a new proteomic tool for studying Trypanosoma pathobiochemistry and antitrypanosomal drug discovery.


Assuntos
Cisteína Proteases , Trypanosoma brucei brucei , Trypanosoma , Biotina , Fluorescência , Proteômica , Relação Estrutura-Atividade
5.
Nutrients ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34444848

RESUMO

Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackiaisoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria. Of all potential flavonoid modification steps, O-deglycosylation (including derhamnosylation) was by far the most abundant in this analysis. In contrast, enzymes putatively involved in C-deglycosylation were detected less often in human gut bacteria and mainly found in Agathobacter faecis (formerly Roseburia faecis). Homologs to phloretin hydrolase, flavanonol/flavanone-cleaving reductase and flavone reductase were of intermediate abundance (several hundred MAGs) and mainly prevalent in Flavonifractor plautii. This first comprehensive insight into the black box of flavonoid modification in the human gut highlights many hitherto overlooked and uncultured bacterial genera and species as potential key organisms in flavonoid modification. This could lead to a significant contribution to future biochemical-microbiological investigations on gut bacterial flavonoid transformation. In addition, our results are important for individual nutritional recommendations and for biotechnological applications that rely on novel enzymes catalyzing potentially useful flavonoid modification reactions.


Assuntos
Proteínas de Bactérias/metabolismo , Flavonoides/metabolismo , Microbioma Gastrointestinal/fisiologia , Fenômenos Fisiológicos da Nutrição/fisiologia , Simulação por Computador , Equol/metabolismo , Genoma Bacteriano , Humanos , Isoflavonas/metabolismo , Metagenoma , Peptídeo Hidrolases/metabolismo , Proteólise
6.
Nutrients ; 13(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073495

RESUMO

A vegan diet could impact microbiota composition and bacterial metabolites like short-chain (SCFA) and branched-chain fatty acids (BCFA). The aim of this study was to compare the concentrations of SCFA, BCFA, ammonia, and fecal pH between vegans and omnivores. In this cross-sectional study (vegans n = 36; omnivores n = 36), microbiota composition, fecal SCFA, BCFA, and ammonia concentrations and pH were analyzed in complete stool samples. A random forest regression (RFR) was used to identify bacteria predicting SCFA/BCFA concentrations in vegans and omnivores. No significant differences in SCFA and BCFA concentrations were observed between vegans and omnivores. Fecal pH (p = 0.005) and ammonia concentration (p = 0.01) were significantly lower in vegans than in omnivores, while fiber intake was higher (p < 0.0001). Shannon diversity was higher in omnivores compared to vegans on species level (p = 0.04) only. In vegans, a cluster of Faecalibacterium prausnitzii, Prevotella copri, Dialister spp., and Eubacterium spp. was predictive for SCFA and BCFA concentrations. In omnivores, Bacteroides spp., Clostridium spp., Ruminococcus spp., and Prevotella copri were predictive. Though SCFA and BCFA did not differ between vegans and omnivores, the results of the RFR suggest that bacterial functionality may be adapted to varying nutrient availability in these diets.


Assuntos
Dieta Vegana , Ácidos Graxos , Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Veganos , Adulto , Amônia , Bactérias/classificação , Biodiversidade , Biomarcadores , Líquidos Corporais , Estudos Transversais , Dieta , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Nutrientes
7.
Int J Med Microbiol ; 311(3): 151494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711649

RESUMO

The interplay between diet, intestinal microbiota and host is a major factor impacting health. A diet rich in unsaturated fatty acids has been reported to stimulate the growth of Bilophila wadsworthia by increasing the proportion of the sulfonated bile acid taurocholate (TC). The taurine-induced overgrowth of B. wadsworthia promoted the development of colitis in interleukin-10-deficient (IL-10-/-) mice. This study aimed to investigate whether intake of the sulfonates sulfoquinovosyl diacylglycerols (SQDG) with a dietary supplement or their degradation product sulfoquinovose (SQ), stimulate the growth of B. wadsworthia in a similar manner and, thereby, cause intestinal inflammation. Conventional IL-10-/- mice were fed a diet supplemented with the SQDG-rich cyanobacterium Arthrospira platensis (Spirulina). SQ or TC were orally applied to conventional IL-10-/- mice and gnotobiotic IL-10-/- mice harboring a simplified human intestinal microbiota with or without B. wadsworthia. Analyses of inflammatory parameters revealed that none of the sulfonates induced severe colitis, but both, Spirulina and TC, induced expression of pro-inflammatory cytokines in cecal mucosa. Cell numbers of B. wadsworthia decreased almost two orders of magnitude by Spirulina feeding but slightly increased in gnotobiotic SQ and conventional TC mice. Changes in microbiota composition were observed in feces as a result of Spirulina or TC feeding in conventional mice. In conclusion, the dietary sulfonates SQDG and their metabolite SQ did not elicit bacteria-induced intestinal inflammation in IL-10-/- mice and, thus, do not promote colitis.


Assuntos
Colite , Dieta , Microbioma Gastrointestinal , Metilglucosídeos , Animais , Colite/induzido quimicamente , Interleucina-10/genética , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Spirulina
8.
Metabolites ; 10(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114761

RESUMO

(1) Introduction: Sulfonates, which can be diet- or host-derived, are a class of compounds detected in the gut, are involved in host-microbiome interactions and have several health effects. Our aim was to develop a method to quantify five of the sulfonates in the intestine and apply it in a simplified human microbiome model. These were taurine, its metabolic precursor cysteate and one of its degradation products isethionate, as well as sulfoquinovose and one of its most relevant degradation products 2,3-dihydroxy-1-propanesulfonate. (2) Methods: An extraction and sample preparation method was developed, without the need for derivatization. To detect and quantify the extracted sulfonates, a multiplexed LC-MS/MS-MRM method was established. (3) Results: The accuracy and precision of the method were within GLP-accepted parameters (www.ema.europa.eu). To apply this method in a pilot study, we spiked either taurine or sulfoquinovose into an in vitro simplified human microbiota model with and without Bilophila wadsworthia, a known sulfonate utilizer. The results revealed that only the culture with B. wadsworthia was able to degrade taurine, with isethionate as an intermediate. After spiking the communities with sulfoquinovose, the results revealed that the simplified human microbiome model was able to degrade sulfoquinovose to 2,3-dihydroxypropane-1-sulfonate, which was probably catalyzed by Escherichia coli. In the community with B. wadsworthia, the 2,3-dihydroxypropane-1-sulfonate produced was further degraded by B. wadsworthia to sulfide. (4) Conclusions: We successfully developed a method for sulfonate quantification and applied it in a first pilot study.

9.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375488

RESUMO

The human intestinal anaerobe Eubacterium ramulus is known for its ability to degrade various dietary flavonoids. In the present study, we demonstrate the cleavage of the heterocyclic C-ring of flavanones and flavanonols by an oxygen-sensitive NADH-dependent reductase, previously described as enoate reductase, from E. ramulus This flavanone- and flavanonol-cleaving reductase (Fcr) was purified following its heterologous expression in Escherichia coli and further characterized. Fcr cleaved the flavanones naringenin, eriodictyol, liquiritigenin, and homoeriodictyol. Moreover, the flavanonols taxifolin and dihydrokaempferol served as substrates. The catalyzed reactions were stereospecific for the (2R)-enantiomers of the flavanone substrates and for the (2S,3S)-configured flavanonols. The enantioenrichment of the nonconverted stereoisomers allowed for the determination of hitherto unknown flavanone racemization rates. Fcr formed the corresponding dihydrochalcones and hydroxydihydrochalcones in the course of an unusual reductive cleavage of cyclic ether bonds. Fcr did not convert members of other flavonoid subclasses, including flavones, flavonols, and chalcones, the latter indicating that the reaction does not involve a chalcone intermediate. This view is strongly supported by the observed enantiospecificity of Fcr. Cinnamic acids, which are typical substrates of bacterial enoate reductases, were also not reduced by Fcr. Based on the presence of binding motifs for dinucleotide cofactors and a 4Fe-4S cluster in the amino acid sequence of Fcr, a cofactor-mediated hydride transfer from NADH onto C-2 of the respective substrate is proposed.IMPORTANCE Gut bacteria play a crucial role in the metabolism of dietary flavonoids, thereby contributing to their activation or inactivation after ingestion by the human host. Thus, bacterial activities in the intestine may influence the beneficial health effects of these polyphenolic plant compounds. While an increasing number of flavonoid-converting gut bacterial species have been identified, knowledge of the responsible enzymes is still limited. Here, we characterized Fcr as a key enzyme involved in the conversion of flavonoids of several subclasses by Eubacterium ramulus, a prevalent human gut bacterium. Sequence similarity of this enzyme to hypothetical proteins from other flavonoid-degrading intestinal bacteria in databases suggests a more widespread occurrence of this enzyme. Functional characterization of gene products of human intestinal microbiota enables the assignment of metagenomic sequences to specific bacteria and, more importantly, to certain activities, which is a prerequisite for targeted modulation of gut microbial functionality.


Assuntos
Proteínas de Bactérias/metabolismo , Eubacterium/enzimologia , Flavanonas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Catálise , Chalconas/metabolismo , Cinamatos/metabolismo , Intestinos/microbiologia , Estereoisomerismo
10.
Int J Syst Evol Microbiol ; 68(10): 3356-3361, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30179152

RESUMO

An anaerobic Gram-stain-positive, non-spore-forming and non-motile bacterium isolated from the human gut, designated CG19-1T, capable of cleaving aromatic C-glucosides was characterized using a polyphasic taxonomic approach. Major fermentation products of this asaccharolytic organism were acetate and butyrate when grown on a complex medium. Growth of strain CG19-1T was stimulated by glucose or pyruvate. Growth inhibition was observed in the presence of several phenolic acids including ferulic acid, which nevertheless was reduced to dihydroferulic acid. Strain CG19-1T contained peptidoglycan type A4ß l-Orn-d-Asp. The major cellular fatty acids were C16 : 0 and C18 : 1ω9c. The genomic DNA G+C content was 47.1 mol%. Based on its 16S rRNA gene sequence, strain CG19-1T is a member of the Lachnospiraceae. However, sequence identity to other Lachnospiraceae species with validly published names is approximately 93.0 % with Frisingicoccus caecimuris being the most closely related species according to phylogenetic analysis. Based on these findings, it is proposed to create a novel genus, Catenibacillus, and a novel species, Catenibacillus scindens, with the type strain CG19-1T (=DSM 106146T=CCUG 71490T).


Assuntos
Clostridiales/classificação , Intestinos/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/genética , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Alemanha , Humanos , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
ACS Med Chem Lett ; 9(4): 345-350, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29670698

RESUMO

Human leukocyte elastase plays a crucial role in a variety of inflammatory disorders and represents an important subject of biomedical studies. The chemotype of peptidic phosphonates was employed for the design of a new activity-based probe for human leukocyte elastase. Its structure combines the phosphonate warhead with an adequate peptide portion and a BODIPY fluorophore with a clickable ethinylphenyl moiety at meso position. The probe 6 was assembled by copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition. It was characterized as an active site-directed elastase inhibitor exhibiting a second-order rate constant of inactivation of 88400 M-1s-1. The suitability of 6 as a fluorescent probe for human leukocyte elastase was demonstrated by in-gel fluorescence analysis. Labeling experiments and inhibition data toward a panel of related proteases underlined the selectivity of the probe for the targeted leukocyte elastase.

12.
Biochemistry ; 57(5): 742-752, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29286643

RESUMO

Human neutrophil elastase is an important regulator of the immune response and plays a role in host defense mechanisms and further physiological processes. The uncontrolled activity of this serine protease may cause severe tissue alterations and impair inflammatory states. The design of an activity-based probe for human neutrophil elastase reported herein relies on a sulfonyloxyphthalimide moiety as a new type of warhead that is linker-connected to a coumarin fluorophore. The inhibitory potency of the activity-based probe was assessed against several serine and cysteine proteases, and the selectivity for human neutrophil elastase (Ki = 6.85 nM) was determined. The adequate fluorescent tag of the probe allowed for the in-gel fluorescence detection of human neutrophil elastase in the low nanomolar range. The coumarin moiety and the anthranilic acid function of the probe, produced in the course of a Lossen rearrangement, were part of two different Förster resonance energy transfers.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/análise , Elastase de Leucócito/análise , Animais , Bovinos , Cisteína Proteases/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Células HEK293 , Humanos , Elastase de Leucócito/antagonistas & inibidores , Ativação de Neutrófilo , Neutrófilos/enzimologia , Serina Proteases/metabolismo , Sulfonamidas/farmacologia , Suínos
13.
J Bacteriol ; 198(21): 2965-2974, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27551015

RESUMO

The enzyme catalyzing the ring-contracting conversion of the flavanonol taxifolin to the auronol alphitonin in the course of flavonoid degradation by the human intestinal anaerobe Eubacterium ramulus was purified and characterized. It stereospecifically catalyzed the isomerization of (+)-taxifolin but not that of (-)-taxifolin. The Km for (+)-taxifolin was 6.4 ± 0.8 µM, and the Vmax was 108 ± 4 µmol min-1 (mg protein)-1 The enzyme also isomerized (+)-dihydrokaempferol, another flavanonol, to maesopsin. Inspection of the encoding gene revealed its complete identity to that of the gene encoding chalcone isomerase (CHI) from E. ramulus Based on the reported X-ray crystal structure of CHI (M. Gall et al., Angew Chem Int Ed 53:1439-1442, 2014, http://dx.doi.org/10.1002/anie.201306952), docking experiments suggest the substrate binding mode of flavanonols and their stereospecific conversion. Mutation of the active-site histidine (His33) to alanine led to a complete loss of flavanonol isomerization by CHI, which indicates that His33 is also essential for this activity. His33 is proposed to mediate the stereospecific abstraction of a proton from the hydroxymethylene carbon of the flavanonol C-ring followed by ring opening and recyclization. A flavanonol-isomerizing enzyme was also identified in the flavonoid-converting bacterium Flavonifractor plautii based on its 50% sequence identity to the CHI from E. ramulus IMPORTANCE: Chalcone isomerase was known to be involved in flavone/flavanone conversion by the human intestinal bacterium E. ramulus Here we demonstrate that this enzyme moreover catalyzes a key step in the breakdown of flavonols/flavanonols. Thus, a single isomerase plays a dual role in the bacterial conversion of dietary bioactive flavonoids. The identification of a corresponding enzyme in the human intestinal bacterium F. plautii suggests a more widespread occurrence of this isomerase in flavonoid-degrading bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Eubacterium/enzimologia , Flavanonas/metabolismo , Liases Intramoleculares/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Eubacterium/química , Flavanonas/química , Liases Intramoleculares/química , Liases Intramoleculares/genética , Cinética , Estrutura Molecular
14.
Chemistry ; 22(25): 8525-35, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27214780

RESUMO

Matriptase-2, a type II transmembrane serine protease, plays a key role in human iron homeostasis. Inhibition of matriptase-2 is considered as an attractive strategy for the treatment of iron-overload diseases, such as hemochromatosis and ß-thalassemia. In the present study, synthetic routes to nine dipeptidomimetic inactivators were developed. Five active compounds (41-45) were identified and characterized kinetically as irreversible inhibitors of matriptase-2. In addition to a phosphonate warhead, these dipeptides possess two benzguanidine moieties as arginine mimetics to provide affinity for matriptase-2 by binding to the S1 and S3/S4 subpockets, respectively. This binding mode was strongly supported by covalent docking analysis. Compounds 41-45 were obtained as mixtures of two diastereomers and were therefore separated into the single epimers. Compound 45 A, with S configuration at the N-terminal amino acid and R configuration at the phosphonate carbon atom, was the most potent matriptase-2 inactivator with a rate constant of inactivation of 2790 m(-1) s(-1) and abolished the activity of membrane-bound matriptase-2 on the surface of intact cells. Based on the chemotyp of phosphono bisbenzguanidines, the design and synthesis of a fluorescent probe (51 A) by insertion of a coumarin label is described. The in-gel fluorescence detection of matriptase-2 was demonstrated by applying 51 A as the first activity-based probe for this enzyme.


Assuntos
Guanidinas/química , Proteínas de Membrana/antagonistas & inibidores , Inibidores de Serino Proteinase/química , Animais , Sítios de Ligação , Domínio Catalítico , Bovinos , Cumarínicos/química , Fator Xa/química , Fator Xa/metabolismo , Corantes Fluorescentes/química , Guanidinas/síntese química , Guanidinas/metabolismo , Humanos , Cinética , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Peptidomiméticos , Fósforo/química , Serina Endopeptidases/metabolismo , Inibidores de Serino Proteinase/síntese química , Inibidores de Serino Proteinase/metabolismo , Estereoisomerismo , Tripsina/química , Tripsina/metabolismo
15.
Gut Microbes ; 7(3): 216-34, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26963713

RESUMO

The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Flavonoides/metabolismo , Trato Gastrointestinal/microbiologia , Bactérias/classificação , Biotransformação , Humanos
16.
Environ Microbiol ; 18(7): 2117-29, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25845411

RESUMO

Gut bacteria play a crucial role in the metabolism of dietary flavonoids and thereby influence the bioactivity of these compounds in the host. The intestinal Lachnospiraceae strain CG19-1 and Eubacterium cellulosolvens are able to deglycosylate C- and O-coupled flavonoid glucosides. Growth of strain CG19-1 in the presence of the isoflavone C-glucoside puerarin (daidzein 8-C-glucoside) led to the induction of two proteins (DfgC, DfgD). Heterologous expression of the encoding genes (dfgC, dfgD) in Escherichia coli revealed no C-deglycosylating activity in the resulting cell extracts but cleavage of flavonoid O-glucosides such as daidzin (daidzein 7-O-glucoside). The recombinant DfgC and DfgD proteins were purified and characterized with respect to their quaternary structure, substrate and cofactor specificity. The products of the corresponding genes (dfgC, dfgD) from E. cellulosolvens also catalysed the O-deglycosylation of daidzin following their expression in E. coli. In combination with three recombinant proteins encoded by adjacent genes in E. cellulosolvens (dfgA, dfgB, dfgE), DfgC and DfgD from E. cellulosolvens catalysed the deglycosylation of the flavone C-glucosides homoorientin (luteolin 6-C-glucoside) and isovitexin (apigenin 6-C-glucoside). Even intact cells of E. coli expressing the five E. cellulosolvens genes cleaved these flavone C-glucosides and, also, flavonoid O-glucosides to the corresponding aglycones.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/genética , Flavonoides/metabolismo , Glicosídeo Hidrolases/genética , Intestinos/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Flavonoides/química , Glicosídeo Hidrolases/metabolismo , Humanos
17.
Appl Environ Microbiol ; 79(11): 3494-502, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23542626

RESUMO

Gut bacteria play a key role in the metabolism of dietary isoflavones, thereby influencing the availability and bioactivation of these polyphenols in the intestine. The human intestinal bacterium Slackia isoflavoniconvertens converts the main soybean isoflavones daidzein and genistein to equol and 5-hydroxy-equol, respectively. Cell extracts of S. isoflavoniconvertens catalyzed the conversion of daidzein via dihydrodaidzein to equol and that of genistein to dihydrogenistein. Growth of S. isoflavoniconvertens in the presence of daidzein led to the induction of several proteins as observed by two-dimensional difference gel electrophoresis. Based on determined peptide sequences, we identified a cluster of eight genes encoding the daidzein-induced proteins. Heterologous expression of three of these genes in Escherichia coli and enzyme activity tests with the resulting cell extracts identified the corresponding gene products as a daidzein reductase (DZNR), a dihydrodaidzein reductase (DHDR), and a tetrahydrodaidzein reductase (THDR). The recombinant DZNR also converted genistein to dihydrogenistein at higher rates than were observed for the conversion of daidzein to dihydrodaidzein. Higher rates were also observed with cell extracts of S. isoflavoniconvertens. The recombinant DHDR and THDR catalyzed the reduction of dihydrodaidzein to equol, while the corresponding conversion of dihydrogenistein to 5-hydroxy-equol was not observed. The DZNR, DHDR, and THDR were expressed as Strep-tag fusion proteins and subsequently purified by affinity chromatography. The purified enzymes were further characterized with regard to their activity, stereochemistry, quaternary structure, and content of flavin cofactors.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Genisteína/metabolismo , Isoflavonas/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Sequência de Bases , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Equol/biossíntese , Escherichia coli , Humanos , Intestinos/microbiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência
18.
Br J Nutr ; 109(8): 1433-41, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22906731

RESUMO

Cyanidin 3-glucoside (C3G) is one of the major dietary anthocyanins implicated in the prevention of chronic diseases. To evaluate the impact of human intestinal bacteria on the fate of C3G in the host, we studied the metabolism of C3G in human microbiota-associated (HMA) rats in comparison with germ-free (GF) rats. Urine and faeces of the rats were analysed for C3G and its metabolites within 48 h after the application of 92 µmol C3G/kg body weight. In addition, we tested the microbial C3G conversion in vitro by incubating C3G with human faecal slurries and selected human gut bacteria. The HMA rats excreted with faeces a three times higher percentage of unconjugated C3G products and a two times higher percentage of conjugated C3G products than the GF rats. These differences were mainly due to the increased excretion of 3,4-dihydroxybenzoic acid, 2,4,6-trihydroxybenzaldehyde and 2,4,6-trihydroxybenzoic acid. Only the urine of HMA rats contained peonidin and 3-hydroxycinnamic acid and the percentage of conjugated C3G products in the urine was decreased compared with the GF rats. Overall, the presence of intestinal microbiota resulted in a 3·7% recovery of the C3G dose in HMA rats compared with 1·7% in GF rats. Human intestinal bacteria rapidly degraded C3G in vitro. Most of the C3G products were also found in the absence of bacteria, but at considerably lower levels. The higher concentrations of phenolic acids observed in the presence of intestinal bacteria may contribute to the proposed beneficial health effects of C3G.


Assuntos
Antocianinas/metabolismo , Bactérias/metabolismo , Trato Gastrointestinal/microbiologia , Glucosídeos/metabolismo , Metagenoma/fisiologia , Animais , Antocianinas/análise , Antocianinas/urina , Células Cultivadas , Cromatografia Líquida , Fezes/química , Trato Gastrointestinal/metabolismo , Glucosídeos/análise , Glucosídeos/urina , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Urina/química
19.
Appl Environ Microbiol ; 78(22): 8151-3, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961906

RESUMO

Eubacterium cellulosolvens cleaved the flavone C-glucosides homoorientin and isovitexin to their aglycones luteolin and apigenin, respectively. The corresponding isomers, orientin and vitexin, or other polyphenolic C-glucosides were not deglycosylated. E. cellulosolvens also cleaved several O-coupled glucosides of flavones and isoflavones to their corresponding aglycones.


Assuntos
Apigenina/metabolismo , Eubacterium/metabolismo , Luteolina/metabolismo , Eubacterium/isolamento & purificação , Hidrólise , Estrutura Molecular
20.
J Nutr ; 142(1): 40-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22113864

RESUMO

Intestinal conversion of the isoflavone daidzein to the bioactive equol is exclusively catalyzed by gut bacteria, but a direct role in equol formation under in vivo conditions has not yet been demonstrated. Slackia isoflavoniconvertens is one of the few equol-forming gut bacteria isolated from humans and, moreover, it also converts genistein to 5-hydroxy-equol. To demonstrate the isoflavone-converting ability of S. isoflavoniconvertens in vivo, the metabolization of dietary daidzein and genistein was investigated in male and female rats harboring a simplified human microbiota without (control) or with S. isoflavoniconvertens (SIA). Feces, urine, intestinal contents, and plasma of the rats were analyzed for daidzein, genistein, and their metabolites. Equol and 5-hydroxy-equol were found in intestinal contents, feces, and urine of SIA rats but not in the corresponding samples of the control rats. 5-Hydroxy-equol was present at much lower concentrations than equol and the main metabolite produced from genistein was the intermediate dihydrogenistein. The plasma of SIA rats contained equol but no 5-hydroxy-equol. Equol formation had no effect on plasma concentrations of the insulin-like growth factor I. The concentrations of daidzein and genistein were considerably lower in all samples of the SIA rats than in those of the control rats. Male SIA rats had higher intestinal and fecal concentrations of the isoflavones and their metabolites than female SIA rats. The observed activity in the rat model indicates that S. isoflavoniconvertens is capable of contributing in vivo to the bioactivation of daidzein and genistein by formation of equol and 5-hydroxy-equol.


Assuntos
Actinobacteria/metabolismo , Equol/biossíntese , Genisteína/farmacocinética , Intestinos/microbiologia , Isoflavonas/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Contagem de Colônia Microbiana , Feminino , Vida Livre de Germes , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...